# **Radiation Polymerization**

# **Radiation Bioengineering**

# **Radiation Bioengineering**

Use made of radiation-induced polymerization, crosslinking and grafting reactions, to produce

- Biocompatible materials
- Immobilized bioactive materials

#### **Biocompatible Materials**

- Biological systems (e.g. humans) react adversely to many synthetic polymers
  - Important to modify polymer surfaces to make them biocompatible
- Thromboresistant materials (blood-compatible materials) have been successfully made, e.g., by
  - Radiation-grafting of N,N-dimethylacrylamide onto Aflon (polytetraethylene and ethylenetetrafluoroethylene copolymers)
  - Radiation-grafting of N-vinyl-2-pyrrolidone onto silicone or polyethylene tubes

Woods and Pikaev (1994)

# **Biocompatible Products**

- Soft contact lenses
  - Crosslinked hydrogels by radiation polymerization of 2-hydroxyethyl methacrylate + ethylene glycol dimethacrylate
  - Grafting of N-vinyl-pyrrolidone onto silicone rubber
- Contact lenses
  - Low temperature (~ -80°C) radiation polymerization of 2-hydroxymethyl methacrylate (radiation casting)
  - Other plastic lenses also made by radiation casting
- Heat-shrinkable connectors for severed blood vessels
  - Radiation crosslinking of trans-1,4-polyisoprene (electron irradiation in air, 100-200 kGy at 300 kGy/h)

Woods and Pikaev (1994)

#### **Immobilized Bioactive Materials**

- Benefits of immobilization
  - Controlled slow release of biologically active components, e.g., drugs
  - Anchoring the bioactive component for repeated use, e.g., enzymes
  - Shaping the material to a desired form, e.g., artificial organs, blood-compatible surfaces
- Two widely used methods for immobilization
  - Chemical bonding of bioactive material and a benign inactive support
  - Trapping bioactive material in a polymer matrix

#### **Immobilized Bioactive Materials**

 Many applications, the most well known being slow-release drugs

| Immobilized Species            | Applications                                                               |
|--------------------------------|----------------------------------------------------------------------------|
| Enzymes                        | Artifical organs, bioreactors, biosensors, separations, therapeutic agents |
| Antibodies and antigens        | Biosensors, diagnostics, drug-delivery systems, immunoassays, separations  |
| Antithrombogenic agents        | Blood-compatible surfaces                                                  |
| Drugs                          | Drug-delivery systems, drug mechanism studies                              |
| Neurotransmitters,<br>hormones | Biosensors                                                                 |
| Cells and organella            | Artifical organs, bioreactors, biosensors                                  |

# **Immobilization of Bioactive Materials**



 Immobilization of a bioactive component by chemical bonding to a graft copolymer formed by irradiation

#### **Immobilization of Bioactive Materials**

Entrapment





Variation of Drug Release Rate With Hydrophilicity and Molecular Weight (contd)

- Gamma-radiation-induced polymerization of monomers containing drugs at -78 °C
- Hydrophilicity changed by choosing polymers of different contents (2-hydroxyethyl methacrylate, ethylene glycol dimethacrylate, hydroxypropyl acrylate, tetraethylene glycol dimethacrylate, diethylene glycol dimethacrylate, and trimethylpropane triacrylate
- Release rates measured at 32°C

#### Variation of Release Rates of a Hormone at 32°C With Type of Polymer Entrapment (Kaetsu, 1992)





#### **Enzyme Immobilization**

- L-Aspartamine, an enzyme
  - Used to treat lymphatic leukemia
  - Shows undesirable side effects
  - Immobilized product better
- Steps in immobilization
  - Radiation grafting of methacrylic acid onto polypropylene, PP-COOH
  - Treatment with carbodiimide to give acylisourea derivative
  - Treatment with N-hydroxysuccinimide
  - Reaction with the enzyme

```
PP-C-NH-enzyme
```

Has also been immobilized on cellulose

Woods and Pikaev (1994)

#### **Tissue - Compatible Materials**

- Skin covering
  - Radiation crosslinked polyacrylamide and polyvinyl pyrrolidone used as wound dressing
  - Radiation grafted cotton gauge/acrylamide/ provital; used as burn dressing which releases provital slowly
- Ocular disks/contact lenses
  - Radiation polymerized disks from a solution of N-vinylpyrrolidone, 2-hydroxyethyl methacrylate and pilocarpin hydrochloride, used to treat glaucoma

Kaetsu (1992); Woods and Pikaev (1994)

#### Conclusions

- The use of radiation processing in the bioengineering field would continue to increase
- An important advantage of radiation processing in immobilization of bioactive materials is that the substrates are not exposed to high temperatures; most bioactive materials are heat-sensitive